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Abstract

Real-time applications for autonomous operations de-
pend largely on fast and robust vision-based localization
systems. Since image processing tasks require processing
large amounts of data, the computational resources often
limit the performance of other processes. To overcome this
limitation, traditional marker-based localization systems
are widely used since they are easy to integrate and achieve
reliable accuracy. However, classical marker-based local-
ization systems significantly depend on standard cameras
with low frame rates, which often lack accuracy due to mo-
tion blur. In contrast, event-based cameras provide high
temporal resolution and a high dynamic range, which can
be utilized for fast localization tasks, even under challeng-
ing visual conditions. This paper proposes a simple but
effective event-based pose estimation system using active
LED markers (ALM) for fast and accurate pose estimation.
The proposed algorithm is able to operate in real time with
a latency below 0.5ms while maintaining output rates of
3 kHz. Experimental results in static and dynamic scenar-
ios are presented to demonstrate the performance of the
proposed approach in terms of computational speed and ab-
solute accuracy, using the OptiTrack system as the basis for
measurement. Moreover, we demonstrate the feasibility of
the proposed approach by deploying the hardware, i.e., the
event-based camera and ALM, and the software in a real
quadcopter application. Our project page is available at:
almpose.github.io

1. Introduction

Fast and reliable spatial localization is essential in a wide
range of robotic applications. For example, in collaborative
scenarios, the ability to accurately and rapidly estimate the
pose of the end effector is a key component for achieving a
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Figure 1. Overview of the experimental setup. Active LED mark-
ers (ALM) are attached to a marker board. An event-based camera
mounted on a drone is used to estimate the pose of the marker
board.

safe, reliable, and robust execution of corresponding tasks.
Vision-based methods [4, 15, 37] are the most common ap-
proaches for obtaining the relative localization of objects
within the line of sight. These methods achieve signifi-
cantly better accuracy compared to other non-contact local-
ization methods, e.g. radio-based localization approaches
[12, 33]. Vision-based approaches are, however, computa-
tionally expensive and typically require more than one sen-
sor, e.g. infrared-based systems [27]. To reduce the compu-
tational overhead, classical markers [16,36] serving as easy-
to-detect anchors are often integrated into vision-based sys-
tems. Since conventional RGB-D cameras are often used
in these systems, the latency of detection cannot be reduced
beyond the limit determined by the frame rate of the utilized
cameras.

Event-based vision is an emerging field that has attracted
much attention in recent years [11, 25]. An event-based
camera consists of an array of independent pixels measuring
changes in luminosity L = log(I), based on the photocur-
rent I [19]. A change in the continuous luminosity signal

∆L(uk, tk) = L(uk, tk)− L(uk, tk −∆tk) > pkC (1)

triggers an event ek = (uk, tk, pk) at pixel location uk =



(uk, vk) due to a temporal contrast threshold ±C, pk ∈
{+1,−1} being its polarity and ∆tk the time since the last
event (at uk) occurred at tk [11]. The state-of-the-art event-
based sensors can produce up to 1.2 Giga events per sec-
ond (Geps) [11] with a microsecond range timestamp ac-
curacy. Compared to frame-based cameras that deliver
periodically dense (i.e. full-frame) information, the event
stream is sparse and contains information that relates only
to changes in the scene. Additionally, event-based cameras
have a high temporal resolution and a large dynamic range.
These features make them ideal for applications requiring
fast and accurate detection. Starting from the early years of
event-based vision development [10], advantages given by
those sensors for robotic applications are noticeable. Re-
cent advancements in event-based sensor development [11]
have enabled them to compete with the precision of other
localization methods [8] due to increased resolution and re-
duced noise. Avoiding accumulated event representations
(i.e. frames), markers can be tracked online utilizing the
event-based camera’s high temporal resolution of up to 1 µs.
An active LED marker (ALM) is a fixed geometric arrange-

ment of individual LEDs, each unambiguously identifiable
by its unique blinking frequency. By identifying the indi-
vidual LEDs in the event stream and knowing the geomet-
ric arrangement of the LEDs, the pose of the ALM can be
retrieved.

In this paper, we propose a fast and simple method
employing an event-based camera together with ALM for
simultaneous detection and tracking of the 6 degrees-of-
freedom (DoF) pose of a rigid object in the 3D space. An
overview of our proposed approach is depicted in Fig. 1
with four ALMs attached to a marker board. The event-
based camera is mounted on the drone, which is utilized
to estimate the pose of the marker board with respect to
the camera’s base frame. To estimate the pose, the blink-
ings of the LEDs are logged with an event-based camera
to identify the corresponding frequencies of each LED in
the ALM. These blinking frequencies are utilized to iden-
tify each individual LED and match it with the known ge-
ometry of the ALM. With this mapping of the individual
points on the camera’s sensor plane and the known geom-
etry of the ALM, the pose of the ALM can be computed
by utilizing a Perspective-n-Point (PnP) algorithm. In the
presented approach, by tuning the biases, i.e., parameters
for tuning the analog front-end of the event-based camera,
and using a priori knowledge about timing, the complexity
of the ALM tracking can be simplified. This aids in reduc-
ing the tracking latency. During the tracking, the initial de-
tection is continuously refined, resulting in subpixel resolu-
tion. Such an approach can still precisely estimate the pose
even under fast rotational and linear motion. The proposed
approach was tested and verified extensively using an ex-
ternal infrared-based positioning system. Our contributions

are listed in the following.

• We propose a fast event-based pose estimation system
using ALM achieving a latency below 0.5ms while
maintaining an output rate of 3 kHz.

• We analyze the proposed system in static and dynamic
scenarios for several in-depth aspects, e.g., absolute
accuracy, static noise, and latency. Translational errors
of 34.5mm±16mm and 0.74◦±0.15◦ orientation er-
rors at distances of 2.1m to 4.8m between the camera
and the marker were achieved. Together with the fast
computing speed, this proves that the proposed algo-
rithm is promising for real-time applications.

• We integrate the proposed system into a quadcopter
application for the 6-DoF pose estimation task. For
indoor experiments, the proposed system outperforms
the ORB-SLAM algorithm. Furthermore, in outdoor
experiments, the proposed system can simultaneously
detect and track the ALM in very aggressive flights at
velocities of up to 10m s−1 and up to 10m away from
the marker.

The paper is organized as follows: Section 2 presents the
related work in the field of pose estimation with event-based
cameras and active markers. Section 3 describes the pro-
posed method for marker detection and tracking. In Section
4, we present the experimental setup and results. Finally,
we conclude the paper in Section 5 with a summary of our
contributions and suggestions for future work.

2. Related Work
Visual localization systems show improved accuracy

compared to systems based on other physical principles
[28], [8]. Fiducial marker-based systems [14] constitute
the most common choice for robotic applications. Due to
the limited range and the dependence on the lighting con-
ditions, some studies proposed LED-based solutions based
on standard RGB cameras [35], infrared [34], or ultravio-
let [31] spectrum. However, the latency cannot be reduced
beyond the camera’s frame rate.

One of the first works in the direction of localiza-
tion based on event-based sensors was the 2D localization
method [32]. The known shape (contours) was tracked, and
the relative localization was determined by event-based vi-
sion. The high temporal resolution of the event-based sen-
sors was used in [22] to localize an Unmanned Aerial Ve-
hicle (UAV) during high-speed maneuvers. The pose infor-
mation was retrieved using a black square as a known shape.
In [17], a visual odometry method was proposed based on
the feature tracking algorithm. In this direction, multiple
methods were developed [17], [21], which show a signif-
icant improvement compared to the RGB-based approach
for high-speed applications.



The utilization of ALMs was proposed first in [23],
where the authors tracked the 2D position of the LED and
used it as a feedback signal for the robot homing and a pan
tilt system. Later, the first method for pose estimation using
ALMs was presented in [5]. Therein, ALMs were used to
detect and estimate the position of a flying quadrocopter.
LEDs were recognized and detected using event polarity
changes in the event stream. In [5], the authors used an
accumulated event representation to decode the frequency
and estimate the pose. In [7], a Gaussian mixture proba-
bility hypothesis density filter was proposed to localize the
camera with respect to the active marker. Therein, online
tracking was presented to increase the robustness and relia-
bility of the pose estimation. The achieved results indicate
a localization error lower than 3 cm in scenarios where the
camera was within 1m relative to the active marker.

Most recent works using ALMs propose the additional
fusion of inertial measurements [29]. The error in the pre-
dicted relative position is in the subcentimeter range. How-
ever, utilizing only the vision-based approach increases the
error by the order of one magnitude. Compared to previous
methods, the marker size is significantly larger. The LEDs
are placed 1m apart. Current work in active marker-based
solutions also focuses on the visual communication aspect
of modulated light.

Different from other approaches in the literature, our ap-
proach simplifies the complexity by tuning the biases and
using a priori knowledge about timing. This helps to reduce
the tracking latency. To the best of the authors’ knowledge,
this work achieves the lowest latency compared to other
methods in the literature.

3. Active Marker Tracking and Pose Estima-
tion

Using ALMs, periodic and dense signals can be gen-
erated as a projection of the LED on the camera’s sensor
plane.

To reduce the computational complexity and the required
bandwidth, the biases of the sensor are tuned to generate a
single event per pixel on every LED blink while suppressing
all other background events to increase the signal-to-noise
ratio, as presented in Figure 2. While [5] uses events of
both polarities and relatively low frequencies (1-2kHz), the
amount of noise can be reduced by using higher frequencies
and disabling one polarity.

The ALM’s structure is an arrangement of high-
frequency blinking LEDs, where a unique frequency of the
blinking pattern can individually recognize each LED (e.g.
different blinking frequencies). The arrangement of the
LEDs has to be fixed and determined in the 3D coordi-
nate space. However, it can also be arranged on a plane,
as utilized in this work. Based on the 2D projection of the
LEDs, knowing their 3D arrangement and camera intrin-

sics, the relative pose of the marker with respect to the sen-
sor can be reconstructed using a Point-n-Perspective (PnP)
algorithm [20]. In this work, the IPPE PnP algorithm is
used [9].

The proposed approach is divided into four parts, as il-
lustrated in Fig. 2. To reduce the noise in the signal, the bias
settings are tuned to produce a single event per pixel on ev-
ery blink of an LED. Next, events are accumulated over the
time 2

fmin
, which is two times the period of the LED’s mini-

mal frequency fmin (typ. fmin ≈ 2 kHz). For those accumu-
lated event clusters, frequencies are recognized. These fre-
quencies are used to identify newly appearing ALMs. For
each of the ALM’s LEDs, trackers are spawned that keep
track of the LEDs’ center points based on single events. The
tracking of the LEDs is independent of the detection loop.
The pose of the ALM is estimated utilizing the trackers of
the ALM. The accuracy of the pose estimation can be ob-
tained using the reprojection error. When an ALM leaves
the field of view or the reprojection error exceeds the de-
fined maximal value, the corresponding trackers are deleted.
If the ALM enters the field of view again, the detection al-
gorithm respawns it. Such an approach reduces the latency
and increases the accuracy of the solution.

3.1. Detection

For the detection of an ALM, the geometrical arrange-
ment and the blinking frequency of the ALM LEDs, have to
be provided in advance.

The range of possible frequencies for the LEDs is wide:
from tests conducted, frequencies higher than 4kHz and
lower than 40kHz work best. To detect lower frequencies,
biases have to be adapted to maximize the signal-to-noise
ratio. As the timestamp is quantized, it is advisable to use
LED frequencies with an integer microsecond period.

Due to the limited noise, detection can be simplified by
using only single types of events. In [29] and [5], the de-
tections rely on the transitions between event polarities. In-
stead, in the proposed approach, we use the timing informa-
tion between consecutive events generated by a single pixel.

For detection, an event frame generated over the period
Td is used, where Td has to be larger than 2

fmin
to ensure that

at least two blinks are visible for every LED. Candidates
for the blinking LEDs can be retrieved by selecting the con-
nected regions where more than Tdfmin events per pixel are
generated. Each region with an area larger than a defined
minimal area is selected as a potential candidate. Due to
the short accumulation period, even under fast motion, the
LEDs’ center points can be calculated by computation of
the center of mass on a 2D plane. The error introduced by
the relative movement of the LED is refined by the tracking
procedure.

For the frequency estimation of the LEDs, a histogram of
the time differences between events in a given area is used.
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Figure 2. Overview of the proposed approach. Our pipeline consists of four asynchronous parts. First, illustrated in (a), to reduce the noise
in the signal, biases are tuned to produce a single event per pixel on every blink. The proposed detection algorithm accumulates the events
over a short period of time (two times the period of the LED’s minimal frequency fmin to ensure at least two blinks are visible for every
LED). Second, for the accumulated blinks, frequencies are recognized and assigned to the specified markers. For every detected marker
(b), trackers (c) are spawned for each individual LED. Third, using a simple tracking procedure, the LEDs are being tracked independently.
Fourth, to quantify tracking quality during runtime, the resulting solution (d) is used to compute the reprojection errors.

In the case of frequencies with an integer microsecond pe-
riod, the histogram has a pronounced peak, while for other
frequencies, the histogram follows a wider Gaussian dis-
tribution. The frequency estimation follows the procedure
proposed in [5].

3.2. Tracking

While detection relies on an accumulated representation
of the events, the tracking can be performed online to re-
duce latency. Using the initial guess from the detection of
the ALM’s LED center points, trackers are spawned for ev-
ery LED. The i-th tracker is characterized by its frequency
fi, center point ci = [xi, yi], and radius ri. In comparison
to the assumptions of [18] and [26], the distribution of the
generated events (within one blink) follows a spatially uni-
form distribution and hence, produces a dense event stream
in this region. This allows us to simplify the tracking al-
gorithm while maintaining precise tracking with sub-pixel
accuracy.

For every LED’s blink, the tracker’s center of mass c̄i is
calculated using all events within its current radius ri. The
update term

c̄i = β̃uk + (1− β̃)c̄i (2)

introduces low-pass filtering, where every new event uk up-
dates the current solution directly with an update factor β̃ of
typically 0.02. The radius ri is updated every N events and
set to twice the average distance of the events from the cen-

ter point of the tracker.

3.3. Pose Estimation

The 6-DoF pose is estimated asynchronously, using the
current center points of the ALM’s trackers. To increase
the update rate of the algorithm, a PnP algorithm is started
whenever the previous iteration is done. Due to the simplic-
ity of the tracking, the PnP calculation is decisive in terms
of latency and output rate.

To ensure stability and detect tracking failures, the re-
projection error is computed and compared to the tracker’s
center points. When the reprojection error of one tracker
exceeds the mean distance of the events from the center
point, a tracking lost signal is generated, and tracking is
stopped. It is reinitialized with the first new detection of a
given marker.

4. Experiments
For the experimental setup, the EVK4 HD evaluation kit

from Prophesee is used. It includes the event-based vision
sensor IMX636ES providing HD resolution (1280 × 720
pixels) and the Soyo SFA0820-5M lens. The ALM consists
of printed circuit boards with 8 LEDs arranged in a square
of 9 cm side length. Each ALM has a base frequency (first
LED), and the remaining frequencies are selected to match
integer microsecond period times. For the experiments, four
markers are arranged in a square on a marker board with a
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Figure 3. Visualization of bias adjustment. The vertical axis in (a)
and (b) represents the flattened indices of the pixels in the region
of interest (ROI) around an LED light. Plot (a) and (b) demon-
strate the event distribution with optimal and default bias settings,
respectively. In the frequency histogram (c), the effect of the low-
pass (lp) and high-pass (hp) settings are illustrated beside the de-
fault and adjusted bias settings.

side length of 59 cm. The 8 outermost LEDs were chosen to
create a single marker. The event stream is processed on a
Desktop PC (Ubuntu 20.04, Intel i9-12900K, 32GB RAM)
and on an Intel Aero Compute Board. As ground truth, the
commercial infrared 3D tracking system OptiTrack is used.
The OptiTrack recordings are triggered with the same trig-
ger signal as the event-based camera via its external trigger
input.

4.1. Bias Adjustment

The bias adjustment of the event camera is essential for
the proposed system’s performance. The IMX636ES sensor
biases [1] allow control over analog pixel gate thresholds to
achieve the desired sensor response. The adjustment goal
is to minimize the number of activated pixels between two
LED blinks, as shown in Figure Fig. 3, thereby reducing
processing complexity. The proposed method employs a
single event polarity for simplicity.

By adjusting the refractory period setting, a pixel should
be rendered insensitive to subsequent changes in LED
brightness. An optimal value during adjustments should fil-
ter out all events between two consecutive LED-triggered
events, as depicted in Fig. 3a. By utilizing high-pass and
low-pass filter setups, the number of environment-generated
events (excluding those by LEDs) can be limited to prevent
sensor overflow and maintain manageable event blob den-
sity. The histogram of frequencies at which events occur
over an accumulation time of 10ms is depicted in Figure
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Figure 4. Analysis of the orientation and position error with refer-
ence distances and orientations.

3c. It illustrates the effect of the low-pass (lp) and high-
pass (hp) bias settings acting as a band-pass filter for the
LED frequencies of the ALM. Please note that the bias val-
ues may affect each other [1]. This causes the high event
count, with the adjusted bias settings, at 6 kHz in Fig. 3c,
where the value exceeds low-pass and high-pass settings.

A detailed explanation of the sensor biases is provided
in [1] and the description of the bias adjustment procedure
is detailed in the supplementary document.

4.2. Absolute Accuracy

To evaluate the absolute accuracy, the pose estimation of
the ALMs and the marker board are compared with the syn-
chronized measurements of the OptiTrack system (ground
truth). For this experiment, the marker board is placed stat-
ically in the scene. The camera moves from close to far,
covering the working distance of the setup, which is lim-
ited by the OptiTrack setup. The kinematic relations of the
experimental setup are described in detail in the supplemen-
tary document.

The magnitude of the absolute position error et and the
orientation error Θr with the distance between the marker
and the camera

∥∥dM
C
∥∥, ranging from 2.1m to 4.8m, as well

as the orientation ΘM
C of the marker with respect to the

camera, is depicted in Fig. 4. Moreover, Fig. 4 illustrates
the difference of using a single ALM with a side length of
9 cm for pose estimation compared to a larger marker board
with a side length of 59 cm. From the plot of the position
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error ∥et∥ in Fig. 4 it can be seen that the marker board has
less noise but a comparable error magnitude. The second
plot displaying the orientation error Θr shows significant
spikes for the single ALM. This indicates flips in the esti-
mated pose, especially for medium to far distances. Hence,
the usage of a marker board with increased side length is
beneficial for accurate orientation estimations. The plot of
the marker orientation ΘM

C in Fig. 4 shows fast orientation
changes beginning at 20 s. This demonstrates the ability of
the proposed method to accurately estimate pose informa-
tion even in highly dynamic scenes.

In order to compare the performance between the
detection-based pose estimation (Sec. 3.1) and the tracking-
based pose estimation (Sec. 3.2), the relative position er-
ror ẽt = ∥et∥

∥dM
C ∥ is displayed in Fig. 5 as a function of the

normalized distance d̃ =
∥d∥M

C
max∥d∥M

C
. The results for the

tracking-based approach indicate a better consistency, i.e.
less noise, and altogether lower error numbers in the 1% to
2% range. The expected linear increase of the position er-
ror with the distance can also be inferred from Fig. 5. The
statistical values of the data illustrated in Fig. 5 are summa-
rized in Tab. 1. The maximum position error of 87.8mm
at a distance of 4.8m and the maximum orientation error
of 1.55◦ indicate the excellent performance of the tracking-
based approach. The standard deviation of the position and
orientation error of 16.2mm and 0.146◦, respectively, show
the robustness of our method. In Table 4, we contextualize
our results within different types of positioning systems.

Table 1. Statistical values of the absolute accuracy measurements.

Tracking Detection
∥et∥ Θr ∥et∥ Θr

Mean 34.5mm 0.738◦ 64.9mm 1.55◦

Std. Dev. 16.2mm 0.146◦ 121mm 5.12◦

Maximum 87.8mm 1.55◦ 1.233m 71.9◦

4.3. Static Noise

In Tab. 2, the noise floor of the proposed method is char-
acterized by different distances between the camera and the
marker board. The low standard deviation values indicate
the stability of the pose estimation. This data can be uti-

lized to tune Bayesian filters (e.g. Kalman filters).

Table 2. Statistics of the noise in static scenes.∥∥dM
C

∥∥ Std. Dev. Maximum
6m 1.4mm 5.5mm
4m 0.68mm 2.95mm
2m 0.25mm 2.17mm

4.4. Latency Measurement and Output Rate

To determine the latency of the proposed system, the exe-
cution priority was elevated. Additionally, the visualization,
as well as background tasks of the operating system, were
disabled. This avoids unintentional interrupts and stalls dur-
ing the execution of the pose estimation.

The latency and output rate values are listed in Tab. 3.
The output rate of the tracking-based approach outperforms
the detection-based method while achieving comparable la-
tency results. As shown in Tab. 3, the proposed method is
capable of running even on an embedded PC of a drone.
While maintaining real-time performance, we can notice a
reduced output rate (limited by the PnP computation time)
as well as an increased average delay (limited by a number
of concurrent threads) compared to a desktop PC. Latency is
measured using a precise synchronization trigger signal and
is equal to the time difference between the trigger and the
time when pose estimation for this timestamp is available.
Our proposed method achieves lower mean latency com-
bined with low standard deviation compared to the state of
the art. A large part of the resulting latency is due to com-
munication overhead.

Table 3. Latency and output rates using a Desktop PC (PC) and
Intel Aero Compute Board (Drone).

Tracking Detection
latency rate latency rate

PC Mean 354 µs 3.81 kHz 699 µs 670Hz
SD 92 µs 64Hz 35 µs 288Hz

Drone Mean 1232 µs 1.32 kHz 1953 µs 223Hz
SD 194 µs 140Hz 240 µs 94Hz

4.5. Application to 6-DoF position estimation for a
quadcopter

In this section, indoor and aggressive outdoor flights are
considered for the 6-DoF position estimation of a quad-
copter.

4.5.1 Indoor flight experiments

Compared to stationary robots, e.g. articulated manipu-
lators [2, 30], which are equipped with high-precision en-
coders to monitor their state, flying robots [38] mainly rely
on IMUs, barometers, and vision-based systems to estimate



Table 4. Comparison of different marker-based approaches and visual odometry/SLAM methods to contextualize the performance of the
system. All the results are taken from corresponding papers. *Possible types E-Events, F-Frames, I-IMU. †Absolute Trajectory Error
(RMS) reported in [13] using ”kitchen” sequence. ‡Sequences used for evaluation include only slow motion.

Method Input* Rate/FPS Range Markers
Positioning

error Resolution
Dynamic
motion

Marker
size

Ours E 3.8 kHz up to 10m Active
1.89%
2.11%

720p
59×59 cm
9×9 cm

Censi et al.
2013 [5] E 250Hz - Active 8.9 cm 128× 128 20×20 cm

Salah et al.
2022 [29] E+I 200Hz up to 7m Active 0.074% 480p ✗‡ 3×3×3m

Chen et al.
2020 [7] E - 1m (tests) Active 3% 346× 240 ✗ 40×30 cm

STag [3] F 56FPS up to 3m Passive 1.32% 720p ✗ 15×15 cm

ORB-SLAM2 [24] F - - SLAM 13.0 cm† 480p -
EDS [13] E+F - - VO 9.6 cm† 480p -

their state. While the pose estimation module equipped with
only IMUs and barometers often suffers from the problem
of drift, vision-based systems ensure a more reliable mea-
surement. In this experiment, the Intel® Aero Ready to
Fly (RTF) Drone, shown in Fig. 1, is employed as it offers
enough computational power for on-board processing.

For absolute drift-free pose information, the ORB-
SLAM2 [24] algorithm is utilized. The ORB-SLAM2 was
chosen for its impressive performance and open-source im-
plementation. Note that ORB-SLAM3 [4], as the succes-
sor of ORB-SLAM2, is a more robust version compared to
ORB-SLAM2. However, the accuracy of these approaches
on stereo and RGB-D cameras is still comparable since the
key concepts of the estimation module and the relocaliza-
tion method, remain unchanged. We are aware that compar-
ing the proposed system with other SLAM algorithms, e.g.,
feature-based SLAM [24] and event-based SLAM [6], may
not be fair because the key concept is different. However,
this comparison could provide a qualitative guide for choos-
ing the right method in a given situation and contextualize
results as shown in Table 4. Similar to previous subsections,
the OptiTrack serves as the source of ground truth.

For the position errors, the metric for comparison is
the difference between a ground-truth position and the es-
timated position as pe = [pe,x pe,y pe,z]

T = pg −
p̂ , where the hat ( ˆ ) indicates quantities estimated by
the ORB-SLAM2 algorithm [24] or with the event-based
marker, respectively, the subindex (·)g stands for the three-
dimensional ground-truth quantities, and the subindex (·)e
for the resulting three-dimensional errors. The orientation
errors are represented as Euler angles. The difference be-
tween the ground-truth quaternion and the estimated quater-
nion is defined as qe = q̂−1 ⊗ qg ,with ⊗ as the quater-
nion product. Subsequently, this error quaternion can be
transformed into an equivalent representation using three
angles, i.e., roll, pitch, and yaw. In this experiment, the
quadcopter is moved aggressively in a zigzag pattern in a
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Figure 6. Time evolution of the drone trajectory.

space of 1.8m in the x-direction, 0.6m in y-direction, and
0.4m in z-direction for about 50 s. The position estimates
and the resulting errors for this case are illustrated in Fig.
6 and Fig. 7. The errors obtained from the proposed al-
gorithm in the x-, y- and z-direction are bounded within
±0.06m, ±0.08m, and ±0.02m, respectively, while larger
errors result from the ORB-SLAM2, i.e., pe,x = ±0.2m,
pe,y ∈ [−0.2, 0.1]T m, and pe,z = ±0.05m. The ori-
entation errors achieved with the two methods are similar,
shown at the bottom of Fig. 7. However, the orientation
errors measured by the proposed system are slightly better
since the spikes in ORB-SLAM2 are larger. More experi-
ments can be found in the supplementary material.

4.5.2 Outdoor Flight Experiments

Outdoor experiments were conducted to demonstrate the
capability of the proposed system to detect and track
motions at very high speeds. In the first scenario, the
drone is equipped with an ALM and the event-based cam-
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Figure 7. The error plots of the corresponding estimates, depicted
in Fig. 6 with respect to the ground-truth measurements.

era is mounted vertically on a tripod on the ground, see
Fig. 8a. Although the drone moves at a maximum speed
of 4.5m s−1 and ascends to a height of 9m, the proposed
system is still able to capture the trajectories of the ALM,
depicted in Fig. 8a. The position signals dM

C indicate a low
noise floor. The velocity signals ḋM

C are calculated based
on the position signals with additional moving average fil-
tering. Unlike in the first scenario, the camera is mounted
on the drone and the ALM is static on the ground in the
second scenario, as illustrated in Fig. 8b. The captured tra-
jectories are shown in Fig. 8a when the drone is moving
with an average speed of 10m s−1. In both scenarios, the
velocity in the z direction is noisy due to the higher noise
in the z estimation by the PnP algorithm. Live videos of the
two scenarios are provided in the supplementary material.

4.6. Limitations

The performance of the proposed system is mainly lim-
ited by the resolution of the event-based camera and the
power of the light source. Based on the sensor resolution,
the ground sampling distance (GSD) using the 8mm lens at
10m is equal to 0.61 cm. This sets an upper bound on the
accuracy of the system, even with sub-pixel tracking preci-
sion and a precisely calibrated camera. Light intensity de-
creases with the square of the distance [29]. Hence, LEDs
with 1W at 10% duty cycle were used in the experiments.
Altogether, the maximum working distance is around 10m.

In favor of accuracy, ALMs with occluded LEDs are not
tracked. However, occlusion of LEDs is detected to deter-
mine if the tracking is lost. An ALM is respawned when all
LEDs are visible again. As the proposed system features a
small marker size intended for outdoor usage, where other
positioning systems are not applicable, LED occlusion is
not a primary concern.
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ḋ
M C

in
m

s−
1

x y z

(a) Camera on the ground.

Camera

Marker

12.9 13 13.1

0

5

t in s

d
M C

in
m

12.9 13 13.1

−5

0

5

t in s

ḋ
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Figure 8. The plot of the drone’s trajectory and velocities during
experiments. The derivative of the positional signal dM

C was fil-
tered with a moving average filter with a window length of 100
samples.

5. Conclusion

This paper presents a fast and accurate vision-based lo-
calization system using an event-based camera with ac-
tive LED markers. Our proposed method overcomes the
limits of traditional marker-based localization systems, i.e.
low frame rate, motion blur, and high computational costs,
by utilizing the advantages of an event-based camera.
The proposed algorithm is simple but effective, achieving
real-time performance with minimal latency below 0.5ms
and output rates above 3 kHz using a regular PC. The
proposed tracking-based approach outperforms detection-
based methods, especially in applications with very fast
movements. the position error normalized to the distance
is constantly below 1.87% with a mean orientation error of
0.738◦. To the best of the authors’ knowledge, the com-
bination of the achieved precision at this output rate and
latency was not achieved so far. For applications, where la-
tency is not crucial, the output of the system can be filtered
and fused with other modalities (IMU, RBG-based local-
ization systems). The proposed system can be used as a
cheap relative localization/reference positioning system for
outdoor applications as data collection where other systems
can not be applied (dynamic scenes, fast motion). Also, the
proposed method opens new possibilities for robotic appli-
cations where the high output rates and high precision of 6-
DoF pose estimation are important, e.g. dynamic handover
tasks and pick-and-place tasks.
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